Wish Pearl

Embedded Linux Primer: A Practical, Real-World Approach

Description: Comprehensive Real-World Guidance for Every Embedded Developer and Engineer This book brings together indispensable knowledge for building efficient, high-value, Linux-based embedded products: information that has never been assembled in one place before. Drawing on years of experience as an embedded Linux consultant and field application engineer, Christopher Hallinan offers solutions for the specific technical issues you’re most likely to face, demonstrates how to build an effective embedded Linux environment, and shows how to use it as productively as possible. Hallinan begins by touring a typical Linux-based embedded system, introducing key concepts and components, and calling attention to differences between Linux and traditional embedded environments. Writing from the embedded developer’s viewpoint, he thoroughly addresses issues ranging from kernel building and initialization to bootloaders, device drivers to file systems. Hallinan thoroughly covers the increasingly popular BusyBox utilities; presents a step-by-step walkthrough of porting Linux to custom boards; and introduces real-time configuration via CONFIG_RT--one of today’s most exciting developments in embedded Linux. You’ll find especially detailed coverage of using development tools to analyze and debug embedded systems--including the art of kernel debugging. Compare leading embedded Linux processors Understand the details of the Linux kernel initialization process Learn about the special role of bootloaders in embedded Linux systems, with specific emphasis on U-Boot Use embedded Linux file systems, including JFFS2--with detailed guidelines for building Flash-resident file system images Understand the Memory Technology Devices subsystem for flash (and other) memory devices Master gdb, KGDB, and hardware JTAG debugging Learn many tips and techniques for debugging within the Linux kernel Maximize your productivity in cross-development environments Prepare your entire development environment, including TFTP, DHCP, and NFS target servers Configure, build, and initialize BusyBox to support your unique requirements About the Author Christopher Hallinan, field applications engineer at MontaVista software, has worked for more than 20 years in assignments ranging from engineering and engineering management to marketing and business development. He spent four years as an independent development consultant in the embedded Linux marketplace. His work has appeared in magazines, including Telecommunications Magazine, Fiber Optics Magazine, and Aviation Digest. About the Author: Christopher Hallinan is currently field applications engineer for Monta Vista Software, living and working in Massachusetts. Chris has spent more than 25 years in the networking and communications marketplace mostly in various product development roles, where he developed a strong background in the space where hardware meets software. Prior to joining Monta Vista, Chris spent four years as an independent Linux consultant providing custom Linux board ports, device drivers, and bootloaders. Chris’s introduction to the open source community was through contributions to the popular U-Boot bootloader. When not messing about with Linux, he is often found singing and playing a Taylor or Martin. Excerpt. © Reprinted by permission. All rights reserved.: Embedded Linux Primer Embedded Linux Primer Preface Although many good books cover Linux, none brings together so many dimensions of information and advice specifically targeted to the embedded Linux developer. Indeed, there are some very good books written about the Linux kernel, Linux system administration, and so on. You will find references right here in this book to many of the ones that I consider to be at the top of their categories. Much of the material presented in this book is motivated by questions I've received over the years from development engineers, in my capacity as an embedded Linux consultant and my present role as a Field Application Engineer for Monta Vista Software, the leading vendor of embedded Linux distributions. Embedded Linux presents the experienced software engineer with several unique challenges. First, those with many years of experience with legacy real-time operating systems (RTOSes) find it difficult to transition their thinking from those environments to Linux. Second, experienced application developers often have difficulty understanding the relative complexities of a cross-development environment. Although this is a primer, intended for developers new to embedded Linux, I am confident that even developers who are experienced in embedded Linux will find some useful tips and techniques that I have learned over the years. Practical Advice for the Practicing Embedded Developer This book contains my view of what an embedded engineer needs to know to get up to speed fast in an embedded Linux environment. Instead of focusing on Linux kernel internals, the kernel chapter in this book focuses on the project nature of the kernel and leaves the internals to the other excellent texts on the subject. You will learn the organization and layout of the kernel source tree. You will discover the binary components that make up a kernel image, and how they are loaded and what purpose they serve on an embedded system. One of my favorite figures in the book is Figure 5-1, which schematically illustrates the build process of a composite kernel image. In the pages of this book, you will learn how the build system works and how to incorporate into the Linux kernel your own custom changes that are required for your own projects. You will discover the mechanism used to drive the configuration of different architectures and features within the Linux kernel source tree and, more important, how to modify this system to customize it to your own requirements. We also cover in detail the kernel command-line mechanism. You will learn how it works, how to configure the kernel's runtime behavior for your requirements, and how to extend this functionality to your own project. You will learn how to navigate the kernel source code and how to configure the kernel for specific tasks related to an embedded system. You will learn many useful tips and tricks for your embedded project, from bootloaders, system initialization, file systems, and Flash memory to advanced kernel- and application-debugging techniques. Intended Audience This book is intended for programmers with a working knowledge of programming in C. I assume that you have a rudimentary understanding of local area networks and the Internet. You should understand and recognize an IP address and how it is used on a simple local area network. I also assume that you have an understanding of hexadecimal and octal numbering systems, and their common usage in a text such as this. Several advanced concepts related to C compiling and linking are explored, so you will benefit from having at least a cursory understanding of the role of the linker in ordinary C programming. Knowledge of the GNU make operation and semantics will also prove beneficial. What This Book Is Not This book is not a detailed hardware tutorial. One of the difficulties the embedded developer faces is the huge variety of hardware devices in use today. The user manual for a modern 32-bit processor with some integrated peripherals can easily exceed 1,000 pages. There are no shortcuts. If you need to understand a hardware device from a programmer's point of view, you will need to spend plenty of hours in your favorite reading chair with hardware data sheets and reference guides, and many more hours writing and testing code for these hardware devices! This is also not a book about the Linux kernel or kernel internals. In this book, you won't learn about the intricacies of the Memory Management Unit (MMU) used to implement Linux's virtual memory-management policies and procedures; there are already several good books on this subject. You are encouraged to take advantage of the "Suggestions for Additional Reading" section found at the end of every chapter. Conventions Used Filenames and code statements are presented in Courier. Commands issued by the reader are indicated in bold Courier. New terms or important concepts are presented in italics. When you see a pathname preceded with three dots, this references a well-known but unspecified top-level directory. The top-level directory is context dependent but almost universally refers to a top-level Linux source directory. For example, .../arch/ppc/kernel/setup.c refers to the setup.c file located in the architecture branch of a Linux source tree. The actual path might be something like ~/sandbox/linux.2.6.14/arch/ppc/kernel/setup.c. Organization of the Book Chapter 1, "Introduction," provides a brief look at the factors driving the rapid adoption of Linux in the embedded environment. Several important standards and organizations relevant to embedded Linux are introduced. Chapter 2, "Your First Embedded Experience," introduces the reader to many concepts related to embedded Linux upon which we build in later chapters. In Chapter 3, "Processor Basics," we present a high-level look at the more popular processors and platforms that are being used to build embedded Linux systems. We examine selected products from many of the major processor manufacturers. All of the major architecture families are represented. Chapter 4, "The Linux Kernel—A Different Perspective," examines the Linux kernel from a slightly different perspective. Instead of kernel theory or internals, we look at its structure, layout, and build construction so you can begin to learn your way around this large software project and, more important, learn where your own customization efforts must be focused. This includes detailed coverage of the kernel build system. Chapter 5, "Kernel Initialization," details the Linux kernel's initialization process. You will learn how the architecture- and bootloader-specific image components are concatenated to the image of the kernel proper for downloading to Flash and booting by an embedded bootloader. The knowledge gained here will help you customize the Linux kernel to your own embedded application requirements. Chapter 6, "System Initialization," continues the detailed examination of the initialization process. When the Linux kernel has completed its own initialization, application programs continue the initialization process in a predetermined manner. Upon completing Chapter 6, you will have the necessary knowledge to customize your own userland application startup sequence. Chapter 7, "Bootloaders," is dedicated to the booloader and its role in an embedded Linux system. We examine the popular open-source bootloader U-Boot and present a porting example. We briefly introduce additional bootloaders in use today so you can make an informed choice about your particular requirements. Chapter 8, "Device Driver Basics," introduces the Linux device driver model and provides enough background to launch into one of the great texts on device drivers, listed as "Suggestions for Additional Reading" at the end of the chapter. Chapter 9, "File Systems," presents the more popular file systems being used in embedded systems today. We include coverage of the JFFS2, an important embedded file system used on Flash memory devices. This chapter includes a brief introduction on building your own file system image, one of the more difficult tasks the embedded Linux developer faces. Chapter 10, "MTD Subsystem," explores the Memory Technology Devices (MTD) subsystem. MTD is an extremely useful abstraction layer between the Linux file system and hardware memory devices, primarily Flash memory. Chapter 11, "BusyBox," introduces BusyBox, one of the most useful utilities for building small embedded systems. We describe how to configure and build BusyBox for your particular requirements, along with detailed coverage of system initialization unique to a BusyBox environment. Appendix C, "BusyBox Commands," lists the available BusyBox commands from a recent BusyBox release. Chapter 12, "Embedded Development Environment," takes a detailed look at the unique requirements of a typical cross-development environment. Several techniques are presented to enhance your productivity as an embedded developer, including the powerful NFS root mount development configuration. Chapter 13, "Development Tools," examines many useful development tools. Debugging with gdb is introduced, including coverage of core dump analysis. Many more tools are presented and explained, with examples including strace, ltrace, top, and ps, and the memory profilers mtrace and dmalloc. The chapter concludes with an introduction to the more important binary utilities, including the powerful readelf utility. Chapter 14, "Kernel Debugging Techniques," provides a detailed examination of many debugging techniques useful for debugging inside the Linux kernel. We introduce the use of the kernel debugger KGDB, and present many useful debugging techniques using the combination of gdb and KGDB as debugging tools. Included is an introduction to using hardware JTAG debuggers and some tips for analyzing failures when the kernel won't boot. Chapter 15, "Debugging Embedded Linux Applications," moves the debugging context from the kernel to your application programs. We continue to build on the gdb examples from the previous two chapters, and we present techniques for multithreaded and multiprocess debugging. Chapter 16, "Porting Linux," introduces the issues related to porting Linux to your custom board. We walk through a simple example and highlight the steps taken to produce a working Linux kernel on a custom PowerPC board. Several important concepts are presented that have trapped many newcomers to Linux kernel porting. Together with the techniques presented in Chapters 13 and 14, you should be ready to tackle your own custom board port after reading this chapter. Chapter 17, "Linux and Real Time," provides an introduction to one of the more exciting developments in embedded Linux: configuring for real time via the CONFIG_RT option. We cover the features available with RT and how they can be used in a design. We also present techniques for measuring latency in your application configuration. The appendixes cover the GNU Public License, U-Boot Configurable Commands, BusyBox Commands, SDRAM Interface Considerations, resources for the open source developer, and a sample configuration file for one of the more popular hardware JTAG debuggers, the BDI-2000. Follow Along You will benefit most from this book if you can divide your time between the pages of this book and your favorite Linux workstation. Grab an old x86 computer to experiment on an embedded system. Even better, if you have access to a single-board computer based on another architecture, use that. You will benefit from learning the layout and organization of a very large code base (the Linux kernel), and you will gain significant knowledge and experience as you poke around the kernel and learn by doing. Look at the code and try to understand the examples produced in this book. Experiment with different settings, configuration options, and hardware devices. Much can be gained in terms of knowledge, and besides, it's loads of fun! GPL Copyright Notice Portions of open-source code reproduced in this book are copyrighted by a large number of individual and corporate contributors. The code reproduced here has been licensed under the terms of the GNU Public License or GPL. Appendix A contains the text of the GNU General Public License. PublisherPrentice Hall Publication date2007 ISBN 10 0131679848 ISBN 13 9780131679849 BindingPaperback Edition number1 Number of pages537

Price: 3.5 USD

Location: Fremont, California

End Time: 2024-10-30T01:25:44.000Z

Shipping Cost: 6.13 USD

Product Images

Embedded Linux Primer: A Practical, Real-World ApproachEmbedded Linux Primer: A Practical, Real-World ApproachEmbedded Linux Primer: A Practical, Real-World Approach

Item Specifics

Restocking Fee: No

Return shipping will be paid by: Buyer

All returns accepted: Returns Accepted

Item must be returned within: 30 Days

Refund will be given as: Money Back

Binding: Paperback

Product Group: Book

Weight: 2 lbs

IsTextBook: Yes

Number of Pages: 576 Pages

Language: English

Publication Name: Embedded Linux Primer : a Practical, Real-World Approach

Publisher: Prentice Hall PTR

Publication Year: 2006

Item Height: 1.1 in

Subject: Operating Systems / Linux

Type: Textbook

Item Weight: 28.8 Oz

Subject Area: Computers

Author: Christopher Hallinan

Item Length: 9.2 in

Series: Prentice Hall Open Source Software Development Ser.

Item Width: 7.1 in

Format: Perfect

Recommended

Embedded Linux Paperback John Lombardo
Embedded Linux Paperback John Lombardo

$6.04

View Details
Embedded Linux by Lombardo, John
Embedded Linux by Lombardo, John

$6.31

View Details
Exploring Raspberry Pi: Interfacing to the Real World with Embedded Linux - GOOD
Exploring Raspberry Pi: Interfacing to the Real World with Embedded Linux - GOOD

$5.18

View Details
Elektor book Design your own Embedded Linux Control Centre
Elektor book Design your own Embedded Linux Control Centre

$20.00

View Details
Dell 7490 Laptop Intel i7 Ubuntu Linux 32GB RAM 1TB SSD [5 YEAR WARRANTY]
Dell 7490 Laptop Intel i7 Ubuntu Linux 32GB RAM 1TB SSD [5 YEAR WARRANTY]

$409.00

View Details
Embedded Linux Primer  by Christopher Hallinan  2nd INTL ED  Free Ship from USA'
Embedded Linux Primer by Christopher Hallinan 2nd INTL ED Free Ship from USA'

$26.51

View Details
Mastering Embedded Linux Programming - Second Edition: Unleash the full potenti
Mastering Embedded Linux Programming - Second Edition: Unleash the full potenti

$27.02

View Details
Embedded Linux Primer: A Practical, Real-World Approach
Embedded Linux Primer: A Practical, Real-World Approach

$7.36

View Details
Mastering Embedded Linux Programming - Second Edition - Paperback - GOOD
Mastering Embedded Linux Programming - Second Edition - Paperback - GOOD

$25.99

View Details
58mm Embedded Thermal Receipt Printer w/ USB/RS232/TTL Serial Port ESC/ POS V7V2
58mm Embedded Thermal Receipt Printer w/ USB/RS232/TTL Serial Port ESC/ POS V7V2

$25.29

View Details