Description: Generative AI Foundations in Python by Carlos Rodriguez, Samira Shaikh Estimated delivery 3-12 business days Format Paperback Condition Brand New Description Begin your generative AI journey with Python as you explore large language models, understand responsible generative AI practices, and apply your knowledge to real-world applications through guided tutorialsKey FeaturesGain expertise in prompt engineering, LLM fine-tuning, and domain adaptationUse transformers-based LLMs and diffusion models to implement AI applicationsDiscover strategies to optimize model performance, address ethical considerations, and build trust in AI systemsPurchase of the print or Kindle book includes a free PDF eBookBook DescriptionThe intricacies and breadth of generative AI (GenAI) and large language models can sometimes eclipse their practical application. It is pivotal to understand the foundational concepts needed to implement generative AI. This guide explains the core concepts behind -of-the-art generative models by combining theory and hands-on application.Generative AI Foundations in Python begins by laying a foundational understanding, presenting the fundamentals of generative LLMs and their historical evolution, while also setting the stage for deeper exploration. Youll also understand how to apply generative LLMs in real-world applications. The book cuts through the complexity and offers actionable guidance on deploying and fine-tuning pre-trained language models with Python. Later, youll delve into topics such as task-specific fine-tuning, domain adaptation, prompt engineering, quantitative evaluation, and responsible AI, focusing on how to effectively and responsibly use generative LLMs.By the end of this book, youll be well-versed in applying generative AI capabilities to real-world problems, confidently navigating its enormous potential ethically and responsibly.What you will learnDiscover the fundamentals of GenAI and its foundations in NLPDissect foundational generative architectures including GANs, transformers, and diffusion modelsFind out how to fine-tune LLMs for specific NLP tasksUnderstand transfer learning and fine-tuning to facilitate domain adaptation, including fields such as financeExplore prompt engineering, including in-context learning, templatization, and rationalization through chain-of-thought and RAGImplement responsible practices with generative LLMs to minimize bias, toxicity, and other harmful outputsWho this book is forThis book is for developers, data scientists, and machine learning engineers embarking on projects driven by generative AI. A general understanding of machine learning and deep learning, as well as some proficiency with Python, is expected. Author Biography Carlos Rodriguez is the Director of AI risk at a major financial institution, where he oversees the validation of cutting-edge AI and machine learning models, including generative AI, to ensure that they remain trustworthy, unbiased, and compliant with stringent regulatory standards. With a degree in data science, numerous professional certifications, and two decades of experience in emerging technology, Carlos is a recognized expert in natural language processing and machine learning. Throughout his career, he has fostered and led high-performing machine learning engineering and data science teams specializing in natural language processing and AI risk, respectively. Known for his human-centered approach to AI, Carlos is a passionate autodidact who continuously expands his knowledge as a data scientist, machine learning practitioner, and risk executive. His current focus lies in developing a comprehensive framework for evaluating generative AI models within a regulatory setting, aiming to set new industry standards for responsible AI adoption and deployment. Details ISBN 1835460828 ISBN-13 9781835460825 Title Generative AI Foundations in Python Author Carlos Rodriguez, Samira Shaikh Format Paperback Year 2024 Pages 190 Publisher Packt Publishing Limited GE_Item_ID:160898466; About Us Grand Eagle Retail is the ideal place for all your shopping needs! With fast shipping, low prices, friendly service and over 1,000,000 in stock items - you're bound to find what you want, at a price you'll love! Shipping & Delivery Times Shipping is FREE to any address in USA. Please view eBay estimated delivery times at the top of the listing. Deliveries are made by either USPS or Courier. We are unable to deliver faster than stated. International deliveries will take 1-6 weeks. NOTE: We are unable to offer combined shipping for multiple items purchased. This is because our items are shipped from different locations. Returns If you wish to return an item, please consult our Returns Policy as below: Please contact Customer Services and request "Return Authorisation" before you send your item back to us. Unauthorised returns will not be accepted. Returns must be postmarked within 4 business days of authorisation and must be in resellable condition. Returns are shipped at the customer's risk. We cannot take responsibility for items which are lost or damaged in transit. For purchases where a shipping charge was paid, there will be no refund of the original shipping charge. Additional Questions If you have any questions please feel free to Contact Us. Categories Baby Books Electronics Fashion Games Health & Beauty Home, Garden & Pets Movies Music Sports & Outdoors Toys
Price: 52.08 USD
Location: Fairfield, Ohio
End Time: 2024-11-28T16:59:43.000Z
Shipping Cost: 0 USD
Product Images
Item Specifics
Restocking Fee: No
Return shipping will be paid by: Buyer
All returns accepted: Returns Accepted
Item must be returned within: 30 Days
Refund will be given as: Money Back
ISBN-13: 9781835460825
Book Title: Generative AI Foundations in Python
Subject Area: Computers, Science
Format: Trade Paperback
Author: Carlos Rodriguez
Item Length: 92.5 in
Subject: Natural Language Processing, General
Item Width: 75 in
Publisher: Packt Publishing, The Limited
Language: English
Type: Textbook
Publication Year: 2024
Publication Name: Generative Ai Foundations in Python : Discover Key Techniques and Navigate Modern Challenges in Llms