Description: Regression by Ludwig Fahrmeir, Thomas Kneib, Stefan Lang, Brian D. Marx Estimated delivery 3-12 business days Format Paperback Condition Brand New Description Now in its second edition, this textbook provides an applied and unified introduction to parametric, nonparametric and semiparametric regression that closes the gap between theory and application. The most important models and methods in regression are presented on a solid formal basis, and their appropriate application is shown through numerous examples and case studies. The most important definitions and statements are concisely summarized in boxes, and the underlying data sets and code are available online on the books dedicated website. Availability of (user-friendly) software has been a major criterion for the methods selected and presented.The chapters address the classical linear model and its extensions, generalized linear models, categorical regression models, mixed models, nonparametric regression, structured additive regression, quantile regression and distributional regression models. Two appendices describe the required matrix algebra, as well as elements of probability calculus and statistical inference.In this substantially revised and updated new edition the overview on regression models has been extended, and now includes the relation between regression models and machine learning, additional details on statistical inference in structured additive regression models have been added and a completely reworked chapter augments the presentation of quantile regression with a comprehensive introduction to distributional regression models. Regularization approaches are now more extensively discussed in most chapters of the book.The book primarily targets an audience that includes students, teachers and practitioners in social, economic, and life sciences, as well as students and teachers in statistics programs, and mathematicians and computer scientists with interests in statistical modeling and data analysis. It is written at an intermediate mathematical level and assumes only knowledge of basic probability, calculus, matrix algebra and statistics. Author Biography Ludwig Fahrmeir is Professor Emeritus at the Institute of Statistics at LMU Munich, Germany. From 1995 to 2006 he was the speaker of the Collaborative Research Center Statistical Analysis of Discrete Structures, supported financially by the German National Science Foundation. His main research interests include semiparametric regression, longitudinal data analysis and spatial statistics, with applications ranging from social science and risk management to public health and neuroscience.Thomas Kneib is a Professor of Statistics at the University of Göttingen, Germany, where he is the Speaker of the interdisciplinary Centre for Statistics and Vice-Speaker of the Campus Institute Data Science. He received his PhD in Statistics at LMU Munich and, during his PostDoc phase, was Visiting Professor of Applied Statistics at the University of Ulm and Substitute Professor of Statistics at the University of Göttingen. From 2009 until 2011 he was Professor of Applied Statistics at Carl von Ossietzky University Oldenburg. His main research interests include semiparametric regression, spatial statistics and distributional regression.Stefan Lang is a Professor of Applied Statistics at the University of Innsbruck, Austria. He received his PhD at LMU Munich. From 2005 to 2006 he was Professor of Statistics at the University of Leipzig. He is currently Associate Editor of the journal Statistical Modelling. His main research interests include semiparametric and spatial regression, multilevel modelling and complex Bayesian models, with applications, among others, in development economics, environmetrics, marketing science, real estate and actuarial science.Brian D. Marx was Professor at the Department of Experimental Statistics at Louisiana State University, LA, USA. He passed away shortly after the authors finished the work on this 2nd edition. His main research interests included P-spline smoothing, ill-conditioned regression problems, and high-dimensional chemometric applications. He was serving as Coordinating Editor for the journal Statistical Modelling for many years, was Chair of the Statistical Modelling Society, and a Fellow of the American Statistical Association. Details ISBN 3662638843 ISBN-13 9783662638842 Title Regression Author Ludwig Fahrmeir, Thomas Kneib, Stefan Lang, Brian D. Marx Format Paperback Year 2023 Pages 746 Edition 2nd Publisher Springer-Verlag Berlin and Heidelberg GmbH & Co. KG GE_Item_ID:144316509; About Us Grand Eagle Retail is the ideal place for all your shopping needs! With fast shipping, low prices, friendly service and over 1,000,000 in stock items - you're bound to find what you want, at a price you'll love! Shipping & Delivery Times Shipping is FREE to any address in USA. Please view eBay estimated delivery times at the top of the listing. Deliveries are made by either USPS or Courier. We are unable to deliver faster than stated. International deliveries will take 1-6 weeks. NOTE: We are unable to offer combined shipping for multiple items purchased. This is because our items are shipped from different locations. Returns If you wish to return an item, please consult our Returns Policy as below: Please contact Customer Services and request "Return Authorisation" before you send your item back to us. Unauthorised returns will not be accepted. Returns must be postmarked within 4 business days of authorisation and must be in resellable condition. Returns are shipped at the customer's risk. We cannot take responsibility for items which are lost or damaged in transit. For purchases where a shipping charge was paid, there will be no refund of the original shipping charge. Additional Questions If you have any questions please feel free to Contact Us. Categories Baby Books Electronics Fashion Games Health & Beauty Home, Garden & Pets Movies Music Sports & Outdoors Toys
Price: 136.61 USD
Location: Fairfield, Ohio
End Time: 2024-11-25T04:45:47.000Z
Shipping Cost: 0 USD
Product Images
Item Specifics
Restocking Fee: No
Return shipping will be paid by: Buyer
All returns accepted: Returns Accepted
Item must be returned within: 30 Days
Refund will be given as: Money Back
ISBN-13: 9783662638842
Book Title: Regression
Number of Pages: Xx, 746 Pages
Publication Name: Regression : Models, Methods and Applications
Language: English
Publisher: Springer Berlin / Heidelberg
Subject: Probability & Statistics / Regression Analysis, Probability & Statistics / General, General, Databases / General
Publication Year: 2023
Item Weight: 40.8 Oz
Type: Textbook
Subject Area: Mathematics, Computers
Author: Stefan Lang, Thomas Kneib, Ludwig Fahrmeir, Brian D. Marx
Item Length: 9.3 in
Item Width: 6.1 in
Format: Trade Paperback